这样,太原UPS电源就得到了足够的充电电压,因为Δt和ΔID由电路参数决定,该充电电压是固定不变的。随着电池组的充电,当其端电压提高到设定值后,再经R7送到RP及R5组成的分压器上,经分压后的反馈信号送到UC3842的输入端2,经过该信号的控制,使6端输入脉冲的频率降低,这样一来充电电压的平均值比原来减小,于是充电的电压被稳定下来。
电流的控制过程是这样的:电流的采样信号是由V3源极上的R10取得的,当充电电流增大时,由于对应频率的增加,V3开关频率增加,在R10上通过电流所造成的电压平均值增大,这个增大了的电压US经R11、C6平滑后送到UC3842的3端,使6端输出脉冲的频率下降,从而也稳定了电流。
由上述可见,这个充电电路实际上是个具有限流稳压功能的开关电源,只要将额定电压、浮充电压、恒流充电电流设置恰当,就能使蓄电池的充电过程基本上沿着理想的充电曲线进行,从而延长蓄电池的使用寿命。
3在线式UPS逆变器
3.1逆变器控制技术——正弦脉宽调制
正弦脉宽调制是根据能量等效原理发展起来的一种脉宽调制法,如图3-4所示。
为了得到接近正弦波的脉宽调制波形,我们将正弦波的一个周期在时间上划分成N等份(N是偶数),每一等份的脉宽都是2π/N。在每个特定的时间间隔中,可以用一个脉冲幅度都等于UΔm、脉宽与其对应的正弦波所包含的面积相等或成比例的矩形电压脉冲来分别代替相应的正弦波部分。这样的N个宽度不等的脉冲就组成了一个与正弦波等效的脉宽调制波形。假设正弦波的幅值为U~m,等效矩形波的幅值为UΔm,则各等效矩形脉冲波的宽度为δ式中:
βi是各时间间隔分段的中心角,也就是各等效脉冲的位置中心角。上面的公式表明:由能量等效法得出的等效脉冲宽度δ与分段中心βi的正弦值成正比。
图3-4正弦脉宽调制的能量等效图
当N=20,Um(n)/Um(1)与U~m/UΔm的关系曲线
(a太原UPS电源)调制电路
(b)波形图
3-5正弦脉宽调制法调制电路及波形图
在实际的小型UPS中,常用图3-5(a)所示的用比较器组成的正弦脉宽调制电路来实现上述脉宽调制的目的。若将三角波脉冲送到比较器的反相端(),将正弦波送到比较器的同相端(),则在正弦波电压幅值大于三角波电压时,比较器的输出端将产生一个脉宽等于正弦波大于三角波部分所对应的时间间隔的正脉冲。于是在电压比较器的输出端将得到一串矩形方波脉冲序列。假设三角波的频率fΔ与正弦波的频率f之比为fΔ/f~=N(N称为载波比),为了使输出方波满足奇函数,N应是偶数。如果假定在正弦波大于三角波的部分所产生脉冲的中心位置,就是每一段脉冲的中心位置βi。
废旧锂电池联合回收工艺流程图
关于这三种主要的锂离子电池回收技术的详细内容已经有很多文献,各种各样的方法都有。在下面主要介绍Umicore、Toxco和OnTo电池回收公司的工艺。
Umicore
Umicore开发了独特的Val’Eas工艺,通过特制的熔炉用高温冶金法回收锂离子电池制得Co(OH)2/CoCl2 ,石墨和有机溶剂则作为燃料放出能量。该工艺的特点是不进行电池解体破碎,避免了解体破碎困难、安全风险高的问题;回收得到的钴等化合物纯度高,可直接返回电池材料生产,实现金属的循环利用;高温熔炼既综合回收了钴、镍、锰、铜等有价金属,又利用了其中塑料与石墨碳、铝箔等,并产出清洁无害的炉渣,过程简单。位于比利时安特卫普的霍博肯工厂目前能够每年处理7000吨左右的废旧二次电池。
由于UPS监控市场发展相对滞后,对于大多数UPS用户来说,能够获取到的有关UPS监控系统信息的途径比较有限,而对UPS监控系统所标你的各项指标和使用的技术也缺乏全面客观的了解。因此对很多UPS用户来说,如何才能购买到一套适合自己需求的UPS监控系统,确实是一件比较头痛的事情。那么在对UPS监控系统进行选购时,用户应该考虑哪些要素呢
1、应用环境
目前UPS已被广泛应用于各行各业,每个行业对UPS的要求也有所侧重,如银行所用的UPS与一般中小企业所用的UPS相比无论从功率、容量或抗干扰能力上部有很大的区别,而UPS的工作环境也更是各具特点。因此,在UPS监控系统选择上也应该有所针对。而目前市面上不少UPS监控系统,如凝智科技推出的中小机房UPS动力环境综合管理解决方案(针对中小机房)、自助银行动力环境综合监控管理方案(针对自助银行)、UPS短信监控解决方案(针对无internet/Ethernet网络或架设网络成本过高的应用环境)等部是针对不同的应用环境所开发的。因此,在UPS监控系统的选择上首先要明确系统的应用环境,这样才能选择到合适的UPS监控系统,而只有与应用环境相匹配的UPS监控系统,其状态检测与故障报警的效能才能得以充分的发挥。
2、监控方式
监控方式的选择决定了监控系统的维护途径和维护成本,因此在监控方式的选择上要以便利性和效用大化为原则。从监控方式上看,目前市场上常见的UPS监控系统主要有两种:
(1)UPS网络集中监控系统
该系统主要是基于Internet/Ethernet网络平台,通过内建完整的TCP/IP网络通讯协议而开发出来的可通过Weh测览器或特制的监控软件对UPS进行远程集中管理的一种UPS监控管理解决方案。该系统具备便利的WebServer管理功能模块,使用户可以在任何操作系统平台上通过Weh测览器方便地进行UPS实时状态查询、基本信息管理、远程操作控制、各项参数设置、用户管理等监控管理功能。适用于远程UPS的网络集中监控管理。
(2)UPS短信监控系统
该系统是基于现代无线通信技术,在UPS网络监控系统的基础上增加GSMMODEM短信传输模块,从而实现对UPS运行状态的短信监测与管理。该系统适用于特定环境情况需要下通过无线短信的方式对远程UPS的运行和故障情况进行监控管理。
(3)兼容性
UPS监控系统的兼容性指的是系统对多品牌、多型号UPS的兼容程度,即系统能否实现多品牌、多型号UPS共享监控管理平台的问题。在UPS供电系统发展初期,由于UPS生产厂家不多,品牌也比较单一,一个机房不同品牌UPS共存的情况比较少见,因此用户也不太关注监控系统的多品牌兼容问题。但随着UPS市场的日趋成熟,目前的各行业机房发生了翻天覆地的变化。同一机房不但存在多种品牌UPS共存的情况,而且由于采购时间不同,同一品牌不同版本(即型号)UPS共存的情况屡见不鲜。在这种情况下,兼容性便成了UPS用户在选购UPS监控系统时必须重要考虑的问题之一。兼容性的强弱也成了判断一套UPS监控系统效能大小的重要尺度。
(4)扩展性
UPS监控系统的扩展性指的是系统所能增加监控对象的数目。模块化是UPS也是UPS监控系统发展的一大趋势。可以实现容量的自由增减是UPS模块化的一大特征,而能否实现多种监控对象的自由扩展则是UPS监控系统模块化的重要标志。从目前机房硬件设备配置情况来看,在对UPS实现全面监控的基础上,再实现对环境温湿度、漏水、门禁、电池组等对象进行按需扩展监控,是UPS用户为迫切的需求。