近年来,随着各种混合动力汽车和电动车的发展,对车载蓄电池的性能要求越来越高。特别是插电式混合动力汽车(PHEV)和电动车(EV)更是这样:和汽油式混合动力汽车相比,对蓄电池容量的要求更高、而充放电损耗和自放电要求尽量小。因此,锂离子蓄电池的地位则越来越重要。
日本市场调查机构“富士经济”集团的研究报告表明:2013年,全世界锂离子蓄电池市场规模为5,670亿日元。而到2018年其规模则增大163.8%,达到9,282亿日元。
锂离子蓄电池除具有体积小、重量轻的特点之外,标称电压(Nominal Voltage)高达3.6伏特、能量密度很高(意味着可以用较少的电池单元获得同样的输出电压)。但是,从安全性的角度,以及为了防止过度充放电而带来的电池性能劣化,需要设置对电池组中的每个电池单元进行电压和温度进行监视的子系统(IC)。同时,考虑到这种子系统也有可能出现故障,还需要有检测该系统工作状态的独立并列系统。
二、串联电池组的固有问题
当串联电池组中电池单元数量增加到数十至上百个时,串联电池组的一个问题变得突出起来,这就是电池单元平衡问题。
虽然锂离子蓄电池为工业化大量生产的产品,但是,在现有的生产环境下,所有的电池单元不可能都具有相同的质量。比如,在制造过程中,电池单元的电极卷绕时的张力的变化,就会影响电池单元的劣化速度。另一方面,也不能要求在使用时,所有的电池组的使用环境完全相同。在使用过程中,离热源近的电池单元劣化较快,反之离热源远的电池单元劣化较慢。
由此而产生的问题是,电池组中的各单元随着使用时间的变化其劣化速度不同,导致电池单元的容量出现偏差。
电池组的总体性能也遵循着“木桶原则(短板原则)”,即木桶的容量取决于构成木桶的所有木板中短的那一块,电池组的容量也取决于容量小的那个电池单元。蓄电池在充电过程中,一旦电池单元中的某一个达到了充满电的状态之后,充电器就会停止充电。电池组的放电过程也是这样:当某个电池单元放电结束,则整个电池组也会停止放电。其结果,就是整个电池组充电容量下降,无法充分发挥电池的能力。
结构特点
极板:正极板采用管式极板,可有效的防止活物质的脱落,正极板骨架由多元合金压铸成型,其合金组织晶粒细小致密,耐腐蚀性能好,使用寿命长;负极板为涂膏式极板,板栅为放射状结构,提高了活物质的利用率和大电流放电能力,充电接受能力强;
电解质:主材料采用德国气相二氧化硅制作,刚注入时为稀溶胶状态,能充满电池内整个极板空间,使极板各部反应均匀。其富液量设计,使电池在高温及过充电的情况下,不易出现干涸现象,其热容量大,散热性好,不会产生热失控现象。电解质在成品电池中呈凝胶状态、不流动,所以无漏液及分层现象;胶体电池解液密度极低,一般在1.24~1.26g/ml,对极板的腐蚀较轻;
气相二氧化硅:采用德国进口,分散性能好,性能稳定;
隔板:采用欧洲AMER-SIL公司的胶体电池专用微孔PVC-SiO2隔板,其隔板孔率大,电阻低。具有更大的电解质存储空间,与胶体电解质亲合度高,电池循环使用寿命长;
胶体紧包覆极群:防止活性物质脱落;
维护及保养
月度保养
测量和记录电池房内环境温度,电池外壳温度和极柱温度。逐个检查电池的清洁度、端子的损伤痕迹及温度、外壳及盖的损坏或温度。测量和记录电池系统的总电压、浮充电流。
季度保养
重复各项月度检查。测量和记录各在线电池的浮充电压。
年度保养
重复季度所有保养、检查、每年检查连接部分是否有松动。
每年电池组以实际负荷进行一次核对性放电试验,放出额定容量的30%~40%。
三年保养
每三年进行一次容量试验(10h率),使用六年后每年做一次。若该组电池实放容量低于额定容量的60%,则认为该电池组寿命终止。蓄电池的工作原理和充电原理 分析一
铅酸蓄电池充电后,正极板二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质—氢氧化铅(Pb(OH)4),氢氧根离子在溶液中,铅离子(Pb4)留在正极板上,故正极板上缺少电子。 铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO4)发生反应,变成铅离子(Pb2),铅离子转移到电解液中,负极板上留下多余的两个电子。可见,在未接通外电路时(电池开路),由于化学作用,正极板上缺少电子,负极板上多余电子,两极板间就产生了一定的电位差,这就是电池的电动势。
分析二
铅酸蓄电池用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用1.28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个铅蓄电池串联成12V的电池组。铅蓄电池在使用一段时间后要补充蒸馏水,使电解质保持含有22~28%的稀硫酸。 放电时,电极反应为:PbO2 + 4H+ + SO42- + 2e- = PbSO4 + 2H2O 负极反应: Pb + SO42- - 2e- = PbSO4 总反应: PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O (向右反应是放电,向左反应是充电)
分析三
蓄电池的五个主要参数为:电池的容量、内阻、标称电压、放电终止电压和充电终止电压。蓄电池充电机是根据蓄电池内部化学反应来给蓄电池充电。只要能够了解蓄电池的一半内部特性,就能够选择合适的充电机。
分析四
电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增加而变化。蓄电池充足电时,极板的活性物质己达到饱和状态,再继续充电,蓄电池的电压也不会上升,此时的电压称为充电终止电压。锡镍电池的充电终止电压为1.75V-1.8V.放电终止电压是指蓄电池放电时允许的低电压。如果电压低于放电终止电压后蓄电池继续放电,电池两端电压会迅速下降,形成深度放电,这样,极板上形的生成物在正常充电时就不易再恢复,从而影响电池的寿命。