0307色环电感是现在较为常用的一款电感器,我公司生产的色环电感型号齐全、品质保证、交货准时、价格优势等,销售热线: 欢迎来电咨询
0307色环电感参数
LGA0307色码电感参数
电感Q值定义
电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。
电感Q值的高低的功用
Q值过大,引起电感烧毁,电容击穿,电路振荡。 Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。
电感Q值的换算
品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量 通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。 Q=wL/R=1/wRC 其中: Q是品质因素 w是电路谐振时的电源频率 L是电感 R是串的电阻 C是电容 Q值是品质因素,它是有用功与总功只比
影响电感Q值的因素
电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。 也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。 元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。 Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。 品质因数描述了回路的储能与它一周耗能之比。 因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的 Q值越大,谐振的通频带就越宽,也就是包含的频率范围更宽,如果需要宽一点的通频带,Q值越大越好。 在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越小越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 阻抗的单位是欧。电感的阻抗在电路中也可以叫直流电阻来表示。
直流电阻就是元件通上直流电,所呈现出的电阻,即元件固有的,静态的电阻。比如线圈,通直流电和交流电,它呈现的电阻是不一样的,通交流电,线圈除了直流电阻外,还有电抗作用,它反映的是电阻和电抗的合作用,叫阻抗。
在电流中,物体对电流阻碍的作用叫做电阻。除了超导体外,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值等于零的物质,不过它要求在足够低的温度和足够弱的磁场下,其电阻率才为零。
在直流电和交流电中,电阻对两种电流都有阻碍作用;作为常见元器件,除了电阻还有电容和电感,这两者对交流电和直流电的作用就不像电阻那样都有阻碍作用了。电容是“隔直通交”,就是对直流电有隔断作用,就是直流不能通过,而交流电可以通过,而且随着电容值的增大或者交流电的增大,电容对交流电的阻碍作用越小,这种阻碍作用可以理解为“电阻”,但是不等同于电阻,这是一种电抗,电抗和电阻单位一样,合称“阻抗”。当然,准确的说,“阻抗”应该有三个部分,除了这两个,就是“感抗”。感抗就是电感对电流的阻碍作用,和电容不同,电感对直流电无阻碍作用(如果严谨的研究的话,在通电达到饱和之前的那个短暂的几毫秒的暂态内,也是有阻碍的)对交流有阻碍作用,感抗的单位和容抗以及电阻的单位都一样是欧姆。
在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么 L= φI 。电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=uH。电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。板上可以看到很多铜线缠绕的线圈,这个线圈就叫电感,电感主要分为磁心电感和空心电感两种,磁心电感电感量大常用在滤波电路,空心电感电感量较小,常用于高频电路。 电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 电感通直流,阻交流 。通直流:所谓通直流就是指在直流电路中,电感的作用就相当于一根导线,不起任何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一定的阻碍作用。 电感的基本作用:滤波、振荡、延迟、陷波等 通直在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L 越大,频率f 越高,感抗就越大。该电感器两端电压的大小与电感L 成正比,还与电流变化速度△i/△t 成正比, 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示: 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC 滤波电路。我们已经知道,电容具有 “阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰 信号的直流电通过LC 滤波电路,那么,交流干扰信号将被电容变成热能消耗掉; 变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高 的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC 滤波电路 在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯
上。而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的 LC 滤波电路。 另外,线路板还大量采用“蛇行线+贴片钽电容”来组成LC 电路,因为蛇行线在电路板上 来回折行,也可以看作一个小电感。
1.电感工作原理_电感对交流电的阻碍作用 为什么电感对交流电有阻碍作用呢?交流电通过电感线圈时,电流时刻在改变,电感线圈中必然产生自感电动势,阻碍电流的变化,这样就形成了对电流的阻碍作用。 2.电感滤波原理 由纯电感电路中欧姆定律的表达式I=U/(XL)和线圈的感抗公式XL=2πfL 可知,感抗却跟通过的电流的频率有关。电感L越大,频率f越高,感抗就越大,电流就越小。所以电感线圈在电路中有“通直流、阻交流”或“通低频、阻高频”的特性。所以电感有滤波作用 3.纯电感电路中欧姆定律的表达式 在纯电感电路中,电流强度跟电压成正比:I=U/(XL)这就是纯电感电路中欧姆定律的表达式。把这个表达式跟I=U/R比,可以看出XL相当于电阻R.XL表示出电感对交流电阻碍作用的大小,叫做感抗,