电力电缆故障探测培训教程

  • 发布时间:2020-09-10 14:33:45,加入时间:2020年06月30日(距今1416天)
  • 地址:中国»陕西»西安:西安光大百纳电子科技
  • 公司:西安光大百纳电子科技, 用户等级:普通会员 已认证
  • 联系:刘,手机:13253508195 微信:weishuai68888 QQ:2858420141

电力电缆故障探测培训教程-高压闪络法(2)

电缆故障学习教程

前面我们对高压闪络法做了简单的分析说明,下面就测试理论部分做简单分析:

  一、 高压脉冲电流法(也叫高压闪络法-电流取样)介绍

   电缆的高阻泄漏性故障与高阻闪络性故障,由于故障点电阻较大(大于10倍的电缆特性阻抗),低压脉冲在故障点没有明显的反射(反射脉冲幅度小于5%),故不能用低压脉冲反射法测距。

   高压脉冲电流法,是将电缆故障点用高电压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。

冲击高压闪络测试的接线示意图,电流耦合器L放置在储能电容C接电缆外皮的接地引线旁。L实际上是一个空心线圈,与地线中电流产生的磁场相匝链。设时间t2与t1时电流分别为i2与i1,t1小于t2但接近t2,根据电磁感应定律求出线圈的输出电压:

         V=K(i2-i1)/(t2-t1)=KΔi/Δt 

其中参数K是一取决于线圈匝数、形状及与地线相对位置的常数,电流变化量:

Δi=i2-i1,时间变化量:Δt=t2-t1。通过计算公式说明,线性电流耦合器的输出电压与地线电流的变化率成正比,而不是与地线中电流本身成正比。

地线中的电流与对应的电流取样器的输出,可以看出电流取样器在地线中电流开始上升时,输出是一个尖脉冲,而在地线中电流趋于平稳后,输出为零。因此,在故障点击穿产生的电流行波到达后,线性电流耦合器输出一脉冲信号,可以从电流耦合取样器有无脉冲信号输出,判断测量点是否有电流行波出现。

与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用的电流耦合取样器平行地放置在低压侧地线旁,与高压回路无直接的电气连接,对记录仪器与操作人员来说,特别安全、方便。

实际测试中,电流取样器有采用空心线圈的,放置在地线旁边,优点是方便,缺点是放置的位置,远近影响成采集脉冲波形的大小。也有采用高频磁芯的电流取样器,直接串接在地线中, 优点是采集波形稳定,缺点是接线稍微比空心线圈的复杂一些。

感应式空心线圈取样器   b  高频磁芯串接式取样器

图4是高频磁芯串接式取样器与高压脉冲电容器的连接图,图中,将取样器与放电间隙直接与脉冲电容器连接,简化了高压接线,高压脉冲波形比较正规容易识别,本培训教程中的实测波形,大都是用这种取样方式取得的。

冲击高压闪络测试法(简称 冲闪法)

  1、冲闪法 应用范围:

   在故障点电阻不很高时,因直流泄漏电流较大,电压几乎全降到了高压试验设备的内阻上去了,电缆上电压很小,故障点形不成闪络,必须使用冲击高压闪络测试法,简称冲闪法。冲闪法亦适用于测试大部分闪络性故障。当然,由于直闪法波形相对简单,容易获得较准确的结果,有使用条件时,应尽量使用直闪法测试。

   在实际的现场测试工作中,符合直闪法使用条件的机会很少,我们一般都是在电压脉冲测试完毕后,直接用冲闪法测试 。

  2. 冲闪法接线:

  冲闪法接法如图5所示,它与直闪法接线基本相同,不同的是在储能电容C与电缆之间串入一球形间隙G。首先,通过调节调压升压器对电容C充电,当电容C上电压足够高时,球形间隙G击穿,电容C对电缆放电,这一过程相当于把直流电源电压突然加到电缆上去。

接线基本相同,就是取样器接线方法不同。还有,就是图6没有标示大功率限流电阻R以及毫安表。 实际测试工作中,由于使用的交直流试验变压器过负荷能力高,控制操作箱低压测也有电流表显示,所以限流电阻、毫安表大都可以不接进行冲闪法测试。

  3、故障点击穿与否的判断

  冲闪法的一个关键是判断故障点是否击穿放电。一些经验不足的测试人员往往认为,只要球间隙放电了,故障点就击穿了,显然这种想法是不正确的。

   球间隙击穿与否与间隙距离及所加电压幅值有关,距离越大,间隙击穿所需电压越高,通过球间隙加到电缆上的电压越高。而电缆故障点能否击穿取决于故障点电压是否超过临界击穿电压,如果球间隙调整较小,电缆上得到的冲击高压小于故障点击穿电压,故障点就不会出现击穿。

  除了根据仪器记录波形判断故障点是否击穿之外,还可通过以下现象来判断故障点是否击穿:

  (1) 电缆故障点没击穿时,一般球间隙放电声嘶哑,不清脆,而且火花较弱。而故障点击穿时,球间隙放电声清脆响亮,火花较大(这点需要有测试经验)。

 (2) 电缆故障点未击穿时,电流表摆动较小(一般低压测电流表小于5A),而故障点击穿时,电流表指针摆动范围较大(一般低压测电流表大于5A)。

下面分析一下电流波形的产生过程。首先说明,球间隙放电后,即被电弧短路,储能电容相当于直流电源,对高频行波信号呈短路状态,电流波反射系数ρ=+1;而电缆远端开路,电流波反射系数ρ=-1。

  假设在t=0,电容上电压为-E时,球间隙击穿,产生沿电缆向前运动的电流波i0=-E/Z0,电流波在电缆远端产生负的反射波ρi0=-i0,返回测量端,远端反射电流波在测量端产生正的全反射,运动到远端后,又被倒相反射回来--,电流波将如此来回反射,直到能量全部消耗掉。把测量端所有电流行波相加后,电流取样耦合器输出。可见,故障点未击穿时,脉冲电流波形是交替变化极性的脉冲,相邻脉冲之间的距离对应电缆长度。

   需要说明的是,上面波形是基于对反射原理的描述,实际使用的测试仪器-闪测仪,标定的脉冲波形,有负脉冲触发、正脉冲触发之分,所以闪测仪显示的波形极性会完全相反。图7c波形是负脉冲触发波形,本系列培训教程中的现场测试波形,均是正脉冲触发波形,二者极性不同,分析波形时要注意区别。

联系我时请说明来自志趣网,谢谢!

免责申明:志趣网所展示的信息由用户自行提供,其真实性、合法性、准确性由信息发布人负责。使用本网站的所有用户须接受并遵守法律法规。志趣网不提供任何保证,并不承担任何法律责任。 志趣网建议您交易小心谨慎。