机房UPS蓄电池
阀控式密封铅酸蓄电池(VRLA)
因其体积较小、密封性能好、绝少维护而被广泛应用于各类UPS电源中。VRLA防止电池内部电解液流动有两种技术方法:一种是将硫酸电解液与SiO2,胶体混合后充满电池内部,制成胶体电池(简称GEL)。这类产品产量较低,约占VRLA电池总量的15%!另一种是利用超细玻璃棉将电解液不饱和地吸附住,制成吸液式电池或贫液式电池(简称AGM)。由于后者具有较好的大电流放电性能,在UPS系统中较多采用,国内厂家也大多生产AGM蓄电池。
胶体电池
胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%!以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。
蓄电池组漏液隐患的防范措施的不足之处
常用防范蓄电池漏液电气短路措施和不足在上述各种蓄电池组电气短路的起因中,蓄电池漏液造成对电池架短路或绝缘度下降,造成正负极通过电池架间接短路,一直是发生几率较高、最难以判断和发现,但后患却非常严重的疑难故障。
蓄电池底部增加托盘——托盘可燃;
电池架增加电木板垫片——不能避免电解液的漫延;
电池架对电气地绝缘——不易实施且不符合安全规范;
蓄电池室安装烟雾告警系统——不及时。
蓄电池组漏液检测的设置、排查和分析判断
(1)蓄电池组漏液告警应定义为重大告警。当出现告警时,应及时派维护人员到现场排查
(2)对于240V直流电源系统,当出现绝缘监察告警时,如仅有总母线电压告警而没有分支路漏电流告警,在排除误告警的可能后,应考虑为蓄电池组绝缘度下降引起的告警
(3)多组蓄电池组(n=1~4)并联的情况
当n=1时,蓄电池组漏液告警即为唯一的一组蓄电池为疑似故障蓄电池组;
当n>1时,可以逐组断开蓄电池组的近端保护开关,断开后系统告警随即消失时,该组蓄电池组即为疑似故障蓄电池组。
(4)蓄电池组漏液检测可以有固定式和便携式两种形式
蓄电池组正负极不接地的240V直流系统(即表1中第1种情况),可以直接通过完善系统绝缘监察功能的方式实现对蓄电池组漏液的在线检测;
同样,蓄电池组正负极不接地且无中间抽头或中间抽头仅接中性点而不接地的交流UPS系统(即表1中第2、3种情况),可设置固定式的蓄电池组漏液检测装置实现对蓄电池组漏液的在线检测;
电池组正负极不接地但有中间抽头且接地的交流UPS系统(即表1中第4种情况),可以利用便携式蓄电池组漏液检测仪定期对蓄电池组进行巡检。
(5)安装固定式蓄电池组漏液测试装置或开始对蓄电池组进行巡检前,应测试并确认蓄电池组为对地悬浮工作状态。即满足下列几点:
蓄电池组正负极均不接地;
蓄电池组的充放电回路对地绝缘或隔离;
有中间抽头的蓄电池组,其中性点不接地或对地呈高阻状态;
对于有中间抽头且中性点接地的UPS系统蓄电池组,可通过将电池架对地绝缘,或利用蓄电池组的近端保护开关将正负极与电源系统分离的方式,确保其对电池架的绝缘。