南昌四通UPS电源总代理

  • 发布时间:2016-07-16 18:19:24,加入时间:2015年03月18日(距今3816天)
  • 地址:中国»北京»大兴:北京西红门镇招商大厦
  • 公司:北京金业顺达科技有限公司,用户等级:普通会员 已认证
  • 联系:15801565060,手机:15801565060 电话:010-57478027 QQ:1873354436

四通UPS电源此时I2=0。该运行方式即为双绕组普通变压器的工作方式,高压侧以普通变压器方式向低压侧供电,有S1=S3。

当自耦变压器在额定负荷下运行时,即S3=60MVA,U1=220kV,可得:IG=IB=157.5A

可见,在这种运行方式下,即使变压器低压侧满负荷,则公共绕组中的电流也未达到额定值,所以,此时自耦变压器的过

负荷保护可按普通变压器的方式装设。

C.高压侧同时向中低压侧供电方式的电流流向(图3)

这种方式可看作上面两种方式的迭加,高压侧输入容量分为两部分:、。

为高压侧以自耦方式传递给中压侧的容量,等于中压侧的输出容量,=S1,此时相当于高压侧单独向中压侧供电,高—中

压绕组间自耦方式供电,IAB、IDB为串联绕组、公共绕组中流过的电流。

为高压侧以高、低压绕组间以变压器(电磁感应)方式传递的容量,等于低压侧的输出容量,=S3,相当于高压侧单独向低

压侧供电,高—低压绕组间以电磁感应方式供电,IB为高压侧电流。

从图中可见,公共绕组中有两个电流:IDB和IB,且两电流方向相反,所以公共绕组中的电流为: IG=IDB-IB

当低压侧满负荷运行时,即本例中的S3=60MVA,则S2=60MVA,且有U1=220kV,K12=2,将其代入式(1-1′)、式(1-1

〃),可以求得:

所以,公共绕组中的电流为:IG=IDB-IB=0

当中压侧满负荷运行时,即S2=120MVA,则S3=0MVA,将其代入式(1-1)或(1-2),同理,可求得:IDB=315A;IB=0A,

所以,此时公共绕组的电流为:IG=IDB-IB=315A

从上述分析可知,这种运行方式下,若变压器未过负荷,则公共绕组中的电流将会在0~315A的范围内,而不会超过额定

值,所以,此时自耦变压器的公共绕组不会过负荷,可不装设过负荷保护。

如图4所示,高低压侧同时向中压侧供电时中压则的输出容量由、两部分组成。

为高压侧以自耦方式传递给中压侧的容量,等于中压侧的输出容量,=S2,此时相当于高压侧单独向中压侧供电,高一中

压绕组间可以自耦方式供电,IAB、IDB为串联绕组、公共绕组中流过的电流。

为高压侧以变压器方式(电磁感应)方式传递的容量,等于低压侧的输出容量,=S3,相当于高压侧单独向低压侧供电,IB

为高压侧流过的电流。

方法如下:
  ⑴ 使用空调器本身的制冷剂排空气。
  拧下高低压阀的后盖螺母、充氟嘴螺母,将高低压阀芯打开(旋1/41/2圈),等待约10秒钟后关闭。同时,从低压阀

充氟嘴螺母处用内六角扳手将充氟针顶向上顶开,有空气排出。当手感有凉气冒出时停止排空。排氟量应小于20g。
  ⑵ 使用真空泵排空气。
  先将阀门充氟嘴螺母拧下,用抽真空连接软管进行连接。将“LO”旋钮按逆时针方向旋转,使其打开,然后合上真空

泵的开关,进行抽真空。停止抽真空后,还要将阀门后盖螺母拧下,用内六角扳手将阀芯按逆时针方向旋开到底,此时制

冷系统的通路被打开。接着将连接软管从阀门上拆除下来,将阀门的连接螺母与后盖螺母拧紧。
  ⑶ 外加氟利昂排空气使用独立的制冷剂罐,将制冷剂罐充注软管与低压阀充氟嘴连接,略微松开室外机高压阀上接

管螺母。松开制冷剂罐的阀门,充入制冷剂2­3秒,然后关死。当制冷剂从高压阀门接管螺母处流出1015秒后,拧紧接管

螺母。从充氟嘴处拆下充注软管,用内六角扳手顶推充氟阀芯顶针,制冷剂放出。当再也听不到噪音时,放松顶针,上紧

充氟嘴螺母,打开室外机高压阀芯。
  6.制冷系统的清洗
  在空调压缩机的电动机绝缘击穿、匝间短路或绕组烧毁以后,由于电动机烧毁后产生大量酸性氧化物而使制冷系统受

到污染。因此,除了要更换压缩机、毛细管与干燥过滤器之外,还要对整个制冷系统进行彻底的清洗。
  制冷系统的污染程度可分为:轻度与重度。轻度污染时制冷系统内冷冻油没有完全污染,从压缩机的工艺管放出制冷

剂和冷冻油时,油的颜色是透明的。若用石蕊试纸试验,油呈淡黄色(正常为白色)。重度污染是严重的,当打开压缩机

的工艺管时时,立即可闻到焦油味,从工艺管倒出冷冻油,颜色发黑,用石蕊试纸浸入油中,5分钟后,纸的颜色变为红

色。空调系统清洗用的清洗剂为R113。清洗前先放出制冷系统管路内的制冷剂,拆卸压缩机,从工艺管中放出少量冷冻油

检查其色、味,并看其有无杂质异物,以明确制冷系统污染的程度。 清洗过程如下:先将清洗剂R113注入液槽中,然后

起动泵,使之运转,开始清洗。对于轻度的污染,只要循环1小时左右即可。而严重污染的,则需要3--4小时。洗净后,

清洗剂可以回收,但经处理后方可再用,在贮液器中的清洗剂要从液管回收。若长时间清洗,清洗剂已脏,过滤器也会堵

塞脏污,应更换清洗剂和过滤器以后再进行。清洗完毕,应对制冷管路进行氮气吹污和干燥处理。槽、过滤器和泵在干燥

处理时一定要与管路部分断开。并在液压管、吸液管的法兰盘上安装盲板,然后用真空泵对系统进行抽真空,在抽真空过

程中,要同时给制冷管路外面吹送热风,以利于快速干燥。后将制冷管路按原样装好,更换新的压缩机和过滤器。
  电流互感器是一种按照原理制作的可测量交流电流的简单器件。作用及原理
电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保

护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且

这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这

时就需要用到电流互感器了。有些人可能见过电工用的钳形表 ,这是一种用来测量交流电流的设备,它那个“钳”便是

穿心式电流互感器。

负荷分析

电力自耦变压器公共绕组过负荷分析

电力自耦变压器与普通变压器相比,具有明显的经济效益,因此在330­KV及以上电压等级的超高压电网中,自耦变压器在

许多场合得到了广泛的应用。

自耦变压器的结构和工作原理与普通变压器相比,有着本质的差别,具有功率传导容易、体积小等特点。自耦变压器在不

同的运行方式下,公共绕组流过的电流与同处一个铁心的串联绕组有所不同。本文从分析自耦变压器的电流流向入手,导

出公共绕组过负荷特征,对过负荷保护及第三侧无功容量与公共绕组容量的关系进行了必要的讨论,以便供设计与运行人

员参考。

1自耦变压器在不同运行方式下的电流流向

1.1自耦变压器常见的几种使用形式

(1) 按电压等级分,第三侧有35kV和10kV两种;

(2) 按与系统连接形式分,第三侧有:

直接向用户供电;

直接向用户供电且安装无功补偿装置;

不直接向用户供电,只接无功补偿装置;

不直接向用户供电,亦不接无功补偿装置,只作为平衡绕组使用。

1.2各种不同运行方式下的自耦变压器电流流向及过负荷分析

电流互感器

电流互感器的结构如下右图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联

,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。

电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端

的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。

由于I1/I2=Ki(Ki称为变流比)所以I1=KiI2

电流互感器在电流表应用中的接线示意图由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比Ki之乘积。如

果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流

大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、

75/5、100/5等等。

为了安全起见,电流互感器副线圈的一端和铁壳必须接地。
型号识别

电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用

场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下:

通过铭牌查看电流互感器型号

L:在第一位,表示电流互感器;
D:在第二位,表示单匝贯穿式,在型号的后一个字母时表示差动保护用(部分生产厂用B或C标出)
F:在第二位,表示复匝贯穿式
Q:在第二位,表示线圈型,在第四位,表示加强型;
M:在第二位,表示母线式;
R:在第二位,表示装入式;
A:在第二位,表示穿墙式;
C:在第二位,表示瓷套式,在第三位,表示瓷绝缘;
Z:在第三位,表示浇注绝缘;
J:在第三位,表示加大容量加强型,在第四位,表示加大容量;
G:在第三位,表示改进型;
W:在第三位,表示户外型;

总结下这段时间做照明驱动电源提高效率的技巧:(多谢LEO梁指出) 
1,主电流回路PCB尽量短。  LAYPCB的经验,及布局,这个没什么,快速的方法就是多看大厂的作品。
 2,优化变压器参数设计,减少振铃带来的涡流损耗。  这个比较难,先要把电磁基础知识掌握,设计合理的变压器,

要紧的是耐心,哪怕是想到能提高0.5%的效率,也要去尝试。 
3,合理选用开关器件。  这个就是成本和性能的平衡了,什么样的客户要求,用什么样的器件,但得合理。如果要效率

,毫无疑问COOL MOS ,低VF输出二极管
 4,输入EMI部分优化设计  如果过安规,这部分考究得比较多,主要就是经验了。
 5,选择高效率的拓补结构  这个是方案选型的开始,例如PWM和QR PFM,当前提客户提出效率要求,就要评估选什么样

的拓补  6,选择好的电解电容  很多人忽略了这个,电解的损耗很大,陈永真老师有个文章中就有详细的解说 
7,启动部分功耗设计  的前提下,就要考虑,目前很多芯片都有HV启动脚,启动电流也越做越低,这点就是要对

新型器件多了解,当然了,还有外加电路无损启动等,我认为不适合LED驱动。 
8,芯片辅助供电优化  这点ST的L6562D应用文档中有指出,15V为佳,但LED一般又为宽电压输出,所以我的选择是加

一级线性稳压,使芯片工作在15V来降低损耗。  欢迎朋友补充。  LED 热学指标 
1、 热阻Rth     热流通道上的温度差与通道上耗散功率之比;在LED点亮后达到热量传导稳态时,芯片表面每耗散1W的功

率,芯片

联系我时请说明来自志趣网,谢谢!

免责申明:志趣网所展示的信息由用户自行提供,其真实性、合法性、准确性由信息发布人负责。使用本网站的所有用户须接受并遵守法律法规。志趣网不提供任何保证,并不承担任何法律责任。 志趣网建议您交易小心谨慎。