赤峰UPS电源代理

  • 发布时间:2016-07-29 22:09:12,加入时间:2015年03月18日(距今3815天)
  • 地址:中国»北京»大兴:北京西红门镇招商大厦
  • 公司:北京金业顺达科技有限公司,用户等级:普通会员 已认证
  • 联系:15801565060,手机:15801565060 电话:010-57478027 QQ:1873354436

1赤峰UPS电源晶体振荡器

  在图3-13中,晶体振荡器是由石英晶体Y、电阻R1~R2、电容器C1~C2、非门U1组成,它的功能是产生频率为2.16MHz的脉冲。由于晶体温度稳定性高,故采用晶体振荡器作为频率源。

5.2分频器

  分频器是由四块集成电路40103组成分频器。集成电路40103是可预置的同步二进制减法计数器。U2为216分频器,它将晶体振荡器输出频率为2.16MHz的脉冲信号分成频率为10kHz的脉冲信号,作为U3、U4、U5的时钟。U3为200分频器,它将10kHz的脉冲信号分成频率为50Hz的脉冲信号,该信号作为内振信号输

出。U5为202分频器,它将10kHz的脉冲信号分频成频率为49.5Hz的脉冲信号,该信号作为下限频率脉冲输出。U4为198分频器,它将10kHz的脉冲信号分频成频率为50.5Hz的脉冲信号,该信号作为上限频率脉冲输出。

5.3同步信号选择器

  同步信号选择器是由两块集成锁相芯片U6、U7,三个非门U8、U9、U11,一个或门U10,两个电子开关U12、U13,电阻R3~R4,电容器C3~C4组成。下限频率方波加在U7的14脚;上限频率方波加在U6的3脚;市电方波分别加在U6的3脚、U7的14脚及U12的输入端;内振方波加在U13的输入端。

  同步信号选择器的工作过程如下:

  当市电频率在49.5Hz~50.5Hz范围内时,U6的u0信号的频率f0为49.5Hz~50.5Hz;ui信号的频率fi为50.5Hz,即fi>f0,故U6输出端为“1”。U7的ui信号的频率fi为49.5Hz~50.5Hz;uO信号的频率fO为49.5Hz,即fi>fo,故U7输出端为“1”。非门U8、U9输出端为“0”,或门U10输出端为“0”,非门U11输出端为“1”,电子开关U12闭合,电子开关U13断开。市电方波作为同步信号加在U14的输入端。照此分析下去可知,当市电频率不在49.5Hz~50.5Hz范围内时,电子开关U12断开,U13闭合,选择50Hz内振方波作为同步信号。

5.4同步跟踪电路

  赤峰UPS电源该电路由U14及N分频器构成,实际上这里分频系数N=1,因此只要适当选择U14中的C、R,就可使其压控振荡器输出端4脚的频率经N分频后为50Hz,该50Hz信号与14脚输入信号同频同相。

在无任何雷电征兆的情况下,用户正在运行的电源内置防雷器却坏了,但是UPS却仍在正常工作着。其实,当远处发生雷击时,雷电浪涌通过电网或通讯线路传输到设备端,虽然不一定立即损毁设备,也会对设备内部造成累计性损害。另外,随着经济的快速发展,设备遭受来自线路上的其它浪涌*(例如各种动力设备启动运行时对电网所带来的操作过电压现象)的可能性也很高,其对设备的影响可能更大。
  
  因此,再简单直观地认定“没有雷电就不需要过电压防护”,显然是不正确的。可以说,目前的过电压防护工作已经由传统的防雷转向直击雷、雷电电磁脉冲、地电位反击和操作过电压的综合防护。
  
  1.UPS应用中的“防雷”误区
  
  
  
  用户在UPS实际应用中,经常会遇到这种情况:明明是晴空万里,感觉不到任何雷电的现象,UPS内置的“防雷器”却损坏了。用户说是UPS机器质量有问题,可UPS本身却仍然可以继续正常工作。
  
  如果附近没有重型的动力设备,要想用“操作过电压”来说服用户,恐怕也不太容易。事实上,国外对此类普通低压配电线路上的各种电压浪涌情况,也有不少统计和报道。例如美国的一则统计表明:在10000小时内,在线间发生的各种电压值浪涌的次数,超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V的就有300余次。
  
  误区之二:廉价“防雷器”也防雷
  
  不少用户出于对相关规定的考虑,要求UPS在较低价格的条件下,也要配置“防雷器”,个别厂家为了“满足”用户要求,随便装个小压敏电阻也称作“有防雷”。事实上,一般小通流容量的压敏电阻只能具备一定的过电压防护作用,如果确实需要防雷,就必须考虑足够的通流容量器件及相关的成本。
  
  2.UPS的过电压防护需求
  
  UPS作为供电系统,必然存在来自多个方面的线路连接,包括市电交流输入、UPS交流输出、通信接口等。严格来说,这三个端口都应设置过电压防护。本文主要讨论交流端口的操作过电压防护问题。UPS的过电压防护包含两重的意义:一方面,来自外部的各种浪涌或电压尖峰对UPS构成一定影响,需要进行防护;另一方面,这些浪涌或电压尖峰有可能透过UPS影响到负载,必要时也需要进行防护。
  
  3.小容量UPS的电源过电压防护特征
  
  配置大型UPS的数据中心或控制中心,其所在的建筑物或机房一般都具备比较完善的整体防雷系统,到达UPS端的过电压残值不高;而小UPS的使用环境则比较差,除了防雷,还要考虑对周边电网上的操作过电压的浪涌冲击防护。
  
  另一方面,大型UPS成本空间较多,防护方案容易实现;而小UPS则成本捉襟见肘,所能采用的防护手段和器件有限。
  
  4.小容量UPS的电源过电压防护方案
  
  过电压防护措施的效果和成本与其器件和方案的选择有着重要的关系。选择较低动作电压和较大通流容量的SPD器件可以降低其残压,但动作电压太低会由于电源的不稳造成SPD器件频繁动作而提前失效,通流容量较大则造成防护成本过高。通常情况下,小容量UPS主要还不是考虑防雷,而是对电源操作过电压的防护。

一、锂电池原理;锂离子电池的正极材料通常有锂的活性化合物组成,负;化学反应原理虽然很简单,然而在实际的工业生产中,;虽然锂离子电池很少有镍镉电池的记忆效应,记忆效应;过度充电和过度放电,将对锂离子电池的正负极造成永;不适合的温度,将引发锂离子电池内部其他化学反应生;而深充放能提升锂离子电池的实际容量吗?专家明确地;锂离子电池一般都带有管理芯片和充电控制芯片.

 

一、锂电池原理

锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳.常见的正极材料主要成分为 LiCoO2 ,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流.

化学反应原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减小电池内阻.

虽然锂离子电池很少有镍镉电池的记忆效应,记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应.但是,锂离子电池在多次充放后容量仍然会下降,其原因是复杂而多样的.主要是正负极材料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他化合物.物理上还会出现正极材料逐渐剥落等情况,总之终降低了电池中可以自由在充放电过程中移动的锂离子数目.

过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,可以直观的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来.这也是锂离子电池为什么通常配有充放电的控制电路的原因.

不适合的温度,将引发锂离子电池内部其他化学反应生成我们不希望看到的化合物,所以在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂.在电池升温到一定的情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保电池充电温度正常.

而深充放能提升锂离子电池的实际容量吗?专家明确地告诉我,这是没有意义的.他们甚至说,所谓使用前三次全充放的“激活”也同样没有什么必要.然而为什么很多人深充放以后 Battery Information 里标示容量会发生改变呢 ­ 后面将会提到.

锂离子电池一般都带有管理芯片和充电控制芯片.其中管理芯片中有一系列的寄存器,存有容量、温度、ID 、充电状态、放电次数等数值.这些数值在使用中会逐渐变化.我个人认为,使用说明中的“使用一个月左右应该全充放一次”的做法主要的作用应该就是修正这些寄存器里不当的值,使得电池的充电控制和标称容量吻合电池的实际情况.

充电控制芯片主要控制电池的充电过程.锂离子电池的充电过程分为两个阶段,恒流快充阶段(电池指示灯呈黄色时)和恒压电流递减阶段 ( 电池指示灯呈绿色闪烁.恒流快充阶段,电池电压逐步升高到电池的标准电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则随着电池电量的上升逐步减弱到 0 ,而终完成充电.

电量统计芯片通过记录放电曲线(电压,电流,时间)可以抽样计算出电池的电量,这就是我们在 Battery Information 里读到的 wh. 值.而锂离子电池在多次使用后,放电曲线是会改变的,如果芯片一直没有机会再次读出完整的一个放电曲线,其计算出来的电量也就是不准确的.所以我们需要深充放来校准电池的芯片.

二、手机锂电池工作原理

手机锂电池的标称电压都是3.6V,充满后电压是4.2V,其实标准速率放电(0.2C,C是锂电池的容量)锂电池的放电平台一般是在3.7V,在锂电池包中其实还包括有一块保护板,保护板的主要作用是防止锂电池的过充过放及短路,所以虽然说在电池上标明了不能用金属物体短路电池的正负极,但其实你短路也没有关系的,保护板会动作切断放电回路。

因为锂电池的化学特性,如果过放后电池可能会损坏,所以需要设计保护电路,以防止电池过放,一般设计的过放保护电压为2.4--2.6V,而在手机的应用中,手机内部也会有电量管理电路,在手机检测到电池电量快耗尽时会显示电量不足,配合电压的检测,在电池还没有到过放时会自动关机。 锂电池的过充电压一般设定在4.35V,因为这个过充电压值的IC出货量大,其实如果电池电压充到4.35V已经是有点过充了,好是4.25V就停止充电,我设计的保护电路原来也是4.35V,我想可能是因为IC的出货量的原因,因为大多数厂家都选用的这个参数的IC,所以为了方便,我也选用了这款。

锂电池的充电过程中是这样的:首先检测电压电压,如果超过2V,即表明电池性能正常,开始以恒流充电,标准充电速率是 0.2C,即860mAH的电池会以接近200mA的电流充电,直到4.2V,这时转到恒压充电,即电压4.2V不变,电流越来越小,直到充电电流小于0.01C,即10mA左右,充电指示为充满,此时可以停止充电,也可继续充电,但电量不会再增加多少,实际上E398的充电速率是 0.4C,加上其实每次电池也没有放空,还有近30%的电量,所以充时时间一般只是三小时左右就可充满。

 

联系我时请说明来自志趣网,谢谢!

免责申明:志趣网所展示的信息由用户自行提供,其真实性、合法性、准确性由信息发布人负责。使用本网站的所有用户须接受并遵守法律法规。志趣网不提供任何保证,并不承担任何法律责任。 志趣网建议您交易小心谨慎。