大力神蓄电池: 近年来,随着欧美等老牌电池生产企业巨大的成本压力及国际铅价的持续上涨,使得这些国际知名的公司都纷纷在中国建厂,或者干脆在中国购买电池进行贴牌销售。这种趋势在带给国内企业可观利润的同时,也因国内部分企业的产品质量问题给自身带来了毁灭性的打击。而国内部分企业电池产品质量与国外知名企业的显著差别,主要就是电池使用寿命尤其是循环使用寿命达不到要求。
铅酸蓄电池的寿命终止多因容量不足,而对于蓄电池来说,其循环寿命更是其众多指标中的关键指标。对于阀控铅酸蓄电池,延长电池循环寿命的公认措施是铅膏配方中增加长效添加剂、采用高锡低钙合金、极板高温固化、提高装配压力等等。
但即使全部采取以上措施,生产出的电池寿命也不一定能达到国外电池寿命的水平。尤其是随着成本压力的增加,很多国内中小企业为了降低生产成本,提高电池的大电流放电性能,不断地降低电池的极板厚度和增加电解液的比重,这对于电池的整体性能,尤其是循环性能来说无疑是杀鸡取卵的方法。
本项目的研究重点即是在上述各项延长电池循环寿命的措施都采取的情况下,重点研究电池正负极板厚度、电解液比重和不同充电条件对电池初期容量、国标循环寿命和1h率100%DOD循环寿命的影响。
将在中国大连兴建一座汽车锂电池工厂,投资500亿日元(约4.12亿美元)。工厂位于大连东北部,工厂将生产电动汽车和插入式混合动力车使用的矩形电池。将与中国合作伙伴一起建设工厂,2017年投入生产。
将在中国大连建汽车电池厂
在中国,已经建有制造个人电脑电池的工厂,新工厂将是首个专门用来生产电动汽车电池的工厂。工厂每年生产的电池可以供20万辆电动汽车使用。中国正在发展环保汽车,当中包括电动汽车,空气污染问题已经困扰中国许多城市。是世界上大的电动汽车锂电池生产商,它已经与特斯拉公司在美国建设锂电池厂。通过向中国转移产能,希望能巩固自己在中美两个关键市场的业务。
韩国LG化学是电动汽车电池第三大供应商,10月时它在南京的工厂开始投入运营。希望能的中国拥有自己的生产基地,以增加对汽车商的电池供应量,它的目标是让该业务在中国的年营收达到1000亿元。
自2013年以来,日本企业在中国的投资开始下滑,国家间的争执是部分原因。今年情况有所好转,Itochu公司已经决定向中国国际信托投资公司注入6000亿日元(约322亿人民币),日本汽车制造商也决定投入500至600亿(27亿-32亿人民币)日元在中国扩建制造厂。的投资引人关注主要是因为它不是汽车商。
大力神蓄电池在美国,和特斯拉投资50亿美元兴建锂电池工厂,它将于明年开始上线生产。到2020年,工厂生产的电池将可以供50万辆电动汽车使用。
1 试验内容
针对以上研究内容,采用两种极板厚度的电池结构,配合4种电解液比重,制作12V、7Ah电池以进行各项性能试验。
1.1 电池制造
电池制造采用3正4负(正极板厚度为3.6mm)、4正5负(正极板厚度为2.8mm)两种结构装配,铅膏配方为今星光公司长寿命铅膏配方,极板为槽化成工艺生产,电池装配后分别加1.27、1.29、1.31、1.33四种比重电解液,加酸量控制单体内有效酸量均相同。电池按照工艺初充电完成后测试电池重量和内阻,两种结构电池的重量分别约为2.60kg和2.45kg,内阻分别约为19mΩ和17mΩ。之后分别测试各类电池的初期容量和两种循环寿命,为清楚表示各类正交试验电池的特点和试验项目,各类电池正交试验情况如表1所示。
1.2 初期性能测试
表1中的各类电池制作完成后,分别测试各类电池20h和3C容量,作为电池初期容量进行比较考核。
1.3 国标循环寿命
电池经过初期容量测试合格后,按照小型阀控密封式铅酸蓄电池国家标准(标准代号为GB/T 196391.1-2005)5.18寿命试验方法测试表1中6类电池的寿命。
1.4 恒流限压(LV)寿命试验
根据各类电池的两项试验情况,采用不同的恒流限压充电方法测试表1中4类电池的1h率放电100%DOD循环寿命。
1.5 电池解剖分析
将上一试验步骤中寿命终止的电池解剖,采用化学方法分析正负极活性物质含量、负极硫酸铅含量以及酸比重等,并确定电池寿命终止的原因。
2 试验结果分析讨论
2.1 电池初期性能试验
电池制作完成后,对各类电池分别任意取3只,按照国标方法测试电池的20h率放电和3C放电,对3只电池的放电数据取平均值,如表2所示。
锂离子电池的诞生及其原理
任何事物的诞生都有一定的背景,锂离子电池的产生同样也离不开这一点。20世纪60-70年代发生的石油危机迫使人们去寻找新的替代能源,由于金属锂在所有金属中轻、氧化还原电位低、质能量密度大,因此锂电池成为了替代能源之一。在20世纪70年代现,锂原电池的商品化,锂原电池的种类比较多(见表1-1).其中常见的为Li//MnO2、Li//CFx(x<1)、Li//SOCl2。前两者主要是民用,后者主要是用,与一般的原电池相比它具有以下明显的优点。
工具/原料
锂离子电池的诞生及其原理/锂离子
方法/步骤
1
锂离子电池的优势
电压高传统的干电池一般为1.5V而锂原电池则可高达3.9V以上。
比能量高,为传统锌负极电池的2~5倍。
工作温度范闱宽,锂原电池一般能在-40-70度下工作,
比功率大.可以大电流放电,
放电平稳,大多数锂一次电池具有平稳的放电曲线。
储存时间长,预期可达10年。
2
锂离子电池的研究
因此在锂原电池的推动下,人们几乎在研究锂原电池的同时就开始可充放电锂二次电池的研究。随着人口的日益增加,截至2006年2月25日,全球人口已经达到了65亿,估计到2012年10月18日将达到70亿,而地球资源有限,因此迫使人们提高对资源的利用率,而采用充电电池是有效途径之一,从而推动了锂二次电池的研究和发展。随着人们环保意识的日益增强,铅、镉等有毒金属的使用日益受到限制,因此需要寻找新的可替代传统铅酸电池和镍镉电池的可充电电池。锂二次电池自然成为有力的候选者之。电子技术的不断发展推动了各种电子产品向小型化发展,如便携电话、微型相机、笔记本电脑等的推广普及,而小型化发展必须伴随着电源的小型化。传统铅酸电池等的容量不高,因此也必须寻找新的电池体系。锂原电他的优点使锂二次电池成为强有力的候选者。
3
锂离子电池的成长
在20世纪80年代未以前,人们主要集中在阻金属锂及极其合金为负极的锂二次电池体系。但是在充电的时候,由于金属锂电极表现的不均匀(凹凸不平)导数表而电位分布不均匀,从而造成锂不均匀沉积。该不均匀沉积过程导致锂在一些部位沉积过快,产生树枝一样的结晶(枝晶)。当枝晶发展到一定程度时,一方面会发生折断,产生‘死锂”造成小可逆的锂;另一方面更严重的是,枝晶穿过隔膜,将正极与负极连接起来,结果产生短路,生成大量的热,使电池着火,甚至发生爆炸,从而带来严重的安全隐患。其中具有代表性的是20世纪70年代末Exxon公司研究的L i//TiS2体系。尽管Exxon公司未能将该锂二次电池体系实现商品化,但是它大大推动了锂二次电池的研究和发展。后来加拿大成立MoLi公司该公司的正极材料为MoS2.负极为金属锂,尽管该公司初期取得良好的经济教益,但是1989年的起爆炸事件导致该公司破产,后来被日本企业收购。这些公司之所以没有能够取得根本性的市场胜利,是由于没有根本解决以金属锂或其合金为负极的锂二次电池的循环寿命和安全问题,因为如上所述,在充电过程中,锂的表而水司能非常均匀,因此不可能从根本上解决枝晶的生长问题,从而不能从根本解决安全陷患;金属锂比较活泼,很容易与非水液体电解质发生反应,产生高压,造成危险。